Advertisement

Bone Health During the Menopause Transition and Beyond

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Obstetrics and Gynecology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Quah C.
        • Boulton C.
        • Moran C.
        The influence of socioeconomic status on the incidence, outcome and mortality of fractures of the hip.
        J Bone Joint Surg Br. 2011; 93: 801-805
        • Ross P.D.
        • Norimatsu H.
        • Davis J.W.
        • et al.
        A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians.
        Am J Epidemiol. 1991; 133: 801-809
        • Lauderdale D.S.
        • Jacobsen S.J.
        • Furner S.E.
        • et al.
        Hip fracture incidence among elderly Asian-American populations.
        Am J Epidemiol. 1997; 146: 502-509
        • Robbins J.
        • Aragaki A.K.
        • Kooperberg C.
        • et al.
        Factors associated with 5-year risk of hip fracture in postmenopausal women.
        JAMA. 2007; 298: 2389-2398
        • Johnell O.
        • Kanis J.A.
        • Oden A.
        • et al.
        Predictive value of BMD for hip and other fractures.
        J Bone Miner Res. 2005; 20: 1185-1194
        • Barrett-Connor E.
        • Siris E.S.
        • Wehren L.E.
        • et al.
        Osteoporosis and fracture risk in women of different ethnic groups.
        J Bone Miner Res. 2005; 20: 185-194
        • Mackey D.C.
        • Eby J.G.
        • Harris F.
        • et al.
        Prediction of clinical non-spine fractures in older black and white men and women with volumetric BMD of the spine and areal BMD of the hip: the health, aging, and body composition study.
        J Bone Miner Res. 2007; 22: 1862-1868
        • Fujiwara S.
        • Kasagi F.
        • Masunari N.
        • et al.
        Fracture prediction from bone mineral density in Japanese men and women.
        J Bone Miner Res. 2003; 18: 1547-1553
        • Yano K.
        • Wasnich R.D.
        • Vogel J.M.
        • et al.
        Bone mineral measurements among middle-aged and elderly Japanese residents in Hawaii.
        Am J Epidemiol. 1984; 119: 751-764
        • Norimatsu H.
        • Mori S.
        • Uesato T.
        • et al.
        Bone mineral density of the spine and proximal femur in normal and osteoporotic subjects in Japan.
        Bone Miner. 1989; 5: 213-222
        • Cummings S.R.
        • Black D.M.
        • Nevitt M.C.
        • et al.
        Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group.
        Lancet. 1992; 341: 72-75
        • Finkelstein J.S.
        • Lee M.L.
        • Sowers M.
        • et al.
        Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors.
        J Clin Endocrinol Metab. 2002; 87: 3057-3067
        • Ishii S.
        • Cauley J.A.
        • Greendale G.A.
        • et al.
        Ethnic differences in composite indices of femoral neck strength.
        Osteoporos Int. 2011; 23: 1381-1390
        • Danielson M.E.
        • Beck T.J.
        • Lian Y.
        • et al.
        Ethnic variability in bone geometry as assessed by hip structure analysis: findings from the hip strength across the menopausal transition study.
        J Bone Miner Res. 2013; 28: 771-779
        • Cheng X.G.
        • Lowet G.
        • Boonen S.
        • et al.
        Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry.
        Bone. 1997; 20: 213-218
        • Young W.C.
        Elastic stability formulas for stress and strain.
        in: Young W.C. Roark’s formulas for stress and strain. 6th edition. McGraw-Hill, New York1989: 688
        • Allolio B.
        Risk factors for hip fracture not related to bone mass and their therapeutic implications.
        Osteoporos Int. 1999; 9: S9-S16
        • Karlamangla A.S.
        • Barrett-Connor E.
        • Young J.
        • et al.
        Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study.
        Osteoporos Int. 2004; 15: 62-70
        • Ishii S.
        • Greendale G.
        • Cauley J.
        • et al.
        Fracture risk assessment without race/ethnicity information.
        J Clin Endocrinol Metab. 2012; 97: 3593-3602
        • Fields A.J.
        • Keaveny T.M.
        Trabecular architecture and vertebral fragility in osteoporosis.
        Curr Osteoporos Rep. 2012; 10: 132-140
        • Silva B.C.
        • Leslie W.D.
        • Resch H.
        • et al.
        Trabecular bone score: a noninvasive analytical method based upon the DXA image.
        J Bone Miner Res. 2014; 29: 518-530
        • Iki M.
        • Tamaki J.
        • Kadowaki E.
        • et al.
        Trabecular bone score (TBS) predicts vertebral fractures in japanese women over 10 years independently of bone density and prevalent vertebral deformity: The Japanese Population-Based Osteoporosis (JPOS) Cohort Study.
        J Bone Miner Res. 2014; 29: 399-407
        • Krueger D.
        • Fidler E.
        • Libber J.
        • et al.
        Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women.
        J Clin Densitom. 2014; 17: 60-65
        • Iki M.
        • Tamaki J.
        • Sato Y.
        • et al.
        Age-related normative values of trabecular bone score (TBS) for Japanese women: the Japanese Population-based Osteoporosis (JPOS) study.
        Osteoporos Int. 2015; 26: 245-252
        • Looker A.C.
        • Safrazi Isfahani N.
        • Fan B.
        • et al.
        Trabecular bone scores and lumbar spine bone mineral density of US adults: Comparison of relationships with demographic and body size variables.
        Osteoporos Int. 2016; 27: 2467-2475
        • Amnuaywattakorn S.
        • Sritara C.
        • Utamukul C.
        • et al.
        Simulated increased soft tissue thickness artefactually decreases trabecular bone score: a phantom study.
        BMC Musculoskelet Disord. 2016; 17: 17
        • Putnam M.S.
        • Yu E.W.
        • Lin D.
        • et al.
        Differences in trabecular microstructure between black and white women assessed by individual trabecular segmentation analysis of HR-pQCT images.
        J Bone Miner Res. 2017; 32: 1100-1108
        • Riis B.J.
        • Hansen M.A.
        • Jensen A.M.
        • et al.
        Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study.
        Bone. 1996; 19: 9-12
        • Zaidi M.
        • Turner C.
        • Canalis E.
        • et al.
        Bone loss or lost bone: rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss.
        Curr Osteoporos Rep. 2009; 7: 118-126
        • Guthrie J.R.
        • Dennerstein L.
        • Taffe J.R.
        • et al.
        The menopausal transition: a 9-year prospective population-based study. The Melbourne Women’s Midlife Health Project.
        Climacteric. 2004; 7: 375-389
        • Seifert-Klauss V.
        • Fillenberg S.
        • Schneider H.
        • et al.
        Bone loss in premenopausal, perimenopausal and postmenopausal women: results of a prospective observational study over 9 years.
        Climacteric. 2012; 15: 433-440
        • Greendale G.A.
        • Sowers M.F.
        • Han W.J.
        • et al.
        Bone mineral density loss in relation to the final menstrual period in a multi-ethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN).
        J Bone Miner Res. 2012; 27: 111-118
        • Crandall C.J.
        • Tseng C.-H.
        • Karlamangla A.S.
        • et al.
        Serum sex steroid levels and longitudinal changes in bone density in relation to the final menstrual period.
        J Clin Endocrinol Metab. 2013; 98: E654-E663
        • Gast G.M.
        • Grobbee D.E.
        • Pop V.J.M.
        • et al.
        Vasomotor symptoms are associated with a lower bone mineral density.
        Menopause. 2009; 16: 231-238
        • Crandall C.J.
        • Zheng Y.
        • Crawford S.L.
        • et al.
        Presence of vasomotor symptoms is associated with lower bone mineral density. A longitudinal analysis.
        Menopause. 2009; 16: 239-246
        • Solomon D.H.
        • Diem S.J.
        • Ruppert K.
        • et al.
        Bone mineral density changes among women initiating proton pump inhibitors or H2 receptor antagonists: a SWAN cohort study.
        J Bone Miner Res. 2015; 30: 232-239
        • Solomon D.H.
        • Ruppert K.
        • Zhao Z.
        • et al.
        Bone mineral density changes among women initiating blood pressure lowering drugs: a SWAN cohort study.
        Osteoporos Int. 2016; 27: 1181-1189
        • Heaney R.P.
        • Barger-Lux M.J.
        • Davies K.M.
        • et al.
        Bone dimensional change with age: interactions of genetic, hormonal, and body size variables.
        Osteoporos Int. 1997; 7: 426-431
        • Ahlborg H.G.
        • Johnell O.
        • Turner C.H.
        • et al.
        Bone loss and bone size after menopause.
        N Engl J Med. 2003; 349: 327-334
        • Ishii S.
        • Cauley J.A.
        • Greendale G.A.
        • et al.
        Trajectories of femoral neck strength in relation to the final menstrual period in a multi-ethnic cohort.
        Osteoporos Int. 2013; 24: 2471-2481
        • Zebaze R.M.
        • Ghasem-Zadeh A.
        • Bohte A.
        • et al.
        Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study.
        Lancet. 2010; 375: 1729-1736
        • Jepsen K.J.
        • Kozminski A.
        • Bigelow E.M.R.
        • et al.
        Femoral neck external size but not aBMD predicts structural and mass changes for women transitioning through menopause.
        J Bone Miner Res. 2017; 32: 1218-1228
        • Sowers M.R.
        • Zheng H.
        • Greendale G.A.
        • et al.
        Changes in bone resorption across the menopause transition: Effects of reproductive hormones, body size, and ethnicity.
        J Clin Endocrinol Metab. 2013; 98: 2854-2863
        • Crandall C.J.
        • Tseng C.-H.
        • Crawford S.L.
        • et al.
        Association of menopausal vasomotor symptoms with increased bone turnover during the menopausal transition.
        J Bone Miner Res. 2011; 26: 840-849
        • Shieh A.
        • Ishii S.
        • Greendale G.A.
        • et al.
        Urinary N-telopeptide, and rate of bone loss over the menopause transition and early postmenopause.
        J Bone Miner Res. 2016; 31: 2057-2064
        • Shieh A.
        • Han W.J.
        • Ishii S.
        • et al.
        Quantifying the balance between bone formation and resorption: an index of net bone formation.
        J Clin Endocrinol Metab. 2016; 101: 2802-2809
        • Cauley J.A.
        • Danielson M.E.
        • Greendale G.A.
        • et al.
        Bone resorption and fracture across the menopausal transition: The Study of Women’s Health Across the Nation.
        Menopause. 2012; 19: 1200-1207
        • Greendale G.
        • LeClair H.
        • Huang M.H.
        • et al.
        Prevalent and incident vertebral deformities in midlife women: results from the Study of Women’s Health Across the Nation (SWAN).
        PLoS One. 2016; 11: e0162664
        • Crandall C.J.
        • Han W.-J.
        • Greendale G.A.
        • et al.
        Socioeconomic status in relation to incident fracture risk in the Study of Women’s Health Across the Nation.
        Osteoporos Int. 2014; 25: 1379-1388
        • Mori T.
        • Ishii S.
        • Greendale G.A.
        • et al.
        Parity, lactation, bone strength, and 12-year fracture risk in adult women: Findings from the Study of Women’s Health Across the Nation.
        Bone. 2015; 73: 160-166
        • Khalil N.
        • Sutton-Tyrell K.
        • Strotmeyer E.S.
        • et al.
        Menopausal bone changes and incident fractures in diabetic women: a cohort study.
        Osteoporos Int. 2011; 22: 1367-1376
        • Ishii S.
        • Cauley J.
        • Crandall C.
        • et al.
        Diabetes and femoral neck strength: findings from the hip strength across the menopausal transition study.
        J Clin Endocrinol Metab. 2012; 97: 190-197
        • Yu E.W.
        • Putman M.S.
        • Derrico N.
        • et al.
        Defects in cortical microarchitecture among African-American women with type 2 diabetes.
        Osteoporos Int. 2015; 26: 673-679
        • Ishii S.
        • Cauley J.A.
        • Greendale G.A.
        • et al.
        C-reactive protein, femoral neck strength, and 9-year fracture risk. Data from The Study of Women’s Health Across the Nation.
        J Bone Miner Res. 2013; 28: 1688-1698
        • Chang P.-Y.
        • Gold E.B.
        • Cauley Jane A.
        • et al.
        Triglyceride levels and fracture risk in midlife women: Study of Women's Health Across the Nation (SWAN).
        J Clin Endocrinol Metab. 2016; 101: 3297-3305
        • Ishii S.
        • Cauley J.
        • Greendale G.
        • et al.
        Pleiotropic effects of obesity on fracture risk: The Study of Women’s Health Across the Nation.
        J Bone Miner Res. 2014; 29: 2561-2570
        • Mori T.
        • Ishii S.
        • Greendale G.A.
        • et al.
        Physical activity as determinant of femoral neck strength in adult women. Findings from the hip strength across the menopausal transition study.
        Osteoporos Int. 2014; 25: 265-272
        • Macdonald H.M.
        • New H.A.
        • Golden M.H.N.
        • et al.
        Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids.
        Am J Clin Nutr. 2004; 79: 155-165
        • Cauley J.A.
        • Greendale G.A.
        • Ruppert K.
        • et al.
        Serum 25 Hydroxyvitamin D, bone mineral density and fracture risk across the menopause.
        J Clin Endocrinol Metab. 2015; 100: 2046-2054
        • Greendale G.A.
        • FitzGerald G.
        • Huang M.-H.
        • et al.
        Dietary soy isoflavones and bone mineral density: results from the Study of Women’s Health Across the Nation.
        Am J Epidemiol. 2002; 155: 746-754
        • Greendale G.A.
        • Tseng C.-H.
        • Han W.
        • et al.
        Dietary isoflavones and bone mineral density during midlife and the menopausal transition: cross-sectional and longitudinal results from the Study of Women's Health Across the Nation Phytoestrogen Study.
        Menopause. 2015; 22: 279-288
        • Eijsvogels T.M.H.
        • Molossi S.
        • Lee D.
        • et al.
        Exercise at the extremes. The amount of exercise to reduce cardiovascular events.
        J Am Coll Cardiol. 2016; 67: 316-329
        • Institute of Medicine
        Dietary reference intakes for calcium and Vitamin D.
        National Academies Press, Washington, DC2011
        • Bischoff-Ferrari H.A.
        • Dawson-Hughes B.
        • Orav J.
        • et al.
        Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial.
        JAMA Intern Med. 2016; 176: 175-183
        • Ginde A.A.
        • Blatchford P.
        • Breese K.
        • et al.
        High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care residents: a randomized clinical trial.
        J Am Geriatr Soc. 2017; 65: 496-503
        • Sanders K.M.
        • Stuart A.I.
        • Williamson E.J.
        • et al.
        Annual high-dose oral vitamin D and falls and fractures in older women. A randomized controlled trial.
        JAMA. 2010; 303: 1815-1822
        • Crandall C.J.
        • Larson J.
        • Gourlay M.L.
        • et al.
        Osteoporosis screening in postmenopausal women 50 to 64 years old: comparison of US Preventive Services Task Force strategy and two traditional strategies in the Women's Health Initiative.
        J Bone Miner Res. 2014; 29: 1661-1666
        • Crandall C.J.
        • Larson J.B.
        • Watts N.B.
        • et al.
        Comparison of fracture risk prediction by the US Preventive Services Task Force strategy and two alternative strategies in women 50–64 years old in the Women's Health Initiative.
        J Clin Endocrinol Metab. 2014; 99: 4514-4522
        • Ensrud K.E.
        • Crandall C.J.
        Osteoporosis.
        Ann Intern Med. 2017; 167: ITC17-ITC32
        • Akhter M.
        • Lappe J.
        • Davies K.
        • et al.
        Transmenopausal changes in the trabecular bone structure.
        Bone. 2007; 41: 111-116
        • Cooper D.
        • Thomas C.
        • Clement J.
        • et al.
        Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft.
        Bone. 2007; 40: 957-965