Advertisement

Role of Robotic Surgery in Benign Gynecology

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Obstetrics and Gynecology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • George E.I.
        • Brand T.C.
        • LaPorta A.
        • et al.
        Origins of robotic surgery: from skepticism to standard of care.
        JSLS. 2018; 22 (e2018.00039)
        • Mendivil A.
        • Holloway R.W.
        • Boggess J.F.
        Emergence of robotic assisted surgery in gynecologic oncology: American perspective.
        Gynecol Oncol. 2009; 114: S24-S31
        • Visco A.G.
        • Advincula A.P.
        Robotic gynecologic surgery.
        Obstet Gynecol. 2008; 112: 1369-1384
        • Advincula A.P.
        • Wang K.
        Evolving role and current state of robotics in minimally invasive gynecologic surgery.
        J Minim Invasive Gynecol. 2009; 16: 291-301
        • Peters B.S.
        • Armijo P.R.
        • Krause C.
        • et al.
        Review of emerging surgical robotic technology.
        Surg Endosc. 2018; 32: 1636-1655
        • Cho J.E.
        • Nezhat F.R.
        Robotics and gynecologic oncology: review of the literature.
        J Minim Invasive Gynecol. 2009; 16: 669-681
        • Lee S.Y.
        • Koo Y.J.
        • Lee D.H.
        Classification of endometriosis.
        Yeungnam Univ J Med. 2021; 38: 10-18
        • Bar-Shavit Y.
        • Jaillet L.
        • Chauvet P.
        • et al.
        Use of indocyanine green in endometriosis surgery.
        Fertil Steril. 2018; 109: 1136-1137
        • Raimondo D.
        • Borghese G.
        • Mabrouk M.
        • et al.
        Use of indocyanine green for intraoperative perfusion assessment in women with ureteral endometriosis: a preliminary study.
        J Minim Invasive Gynecol. 2021; 28: 42-49
        • Cosentino F.
        • Vizzielli G.
        • Turco L.C.
        • et al.
        Near-infrared imaging with indocyanine green for detection of endometriosis lesions (Gre-Endo Trial): a pilot study.
        J Minim Invasive Gynecol. 2018; 25: 1249-1254
        • Santos-Carreras L.
        • Hagen M.
        • Gassert R.
        • et al.
        Survey on surgical instrument handle design: ergonomics and acceptance.
        Surg Innov. 2012; 19: 50-59
        • Catanzarite T.
        • Tan-Kim J.
        • Whitcomb E.L.
        • et al.
        Ergonomics in surgery: a review.
        Female Pelvic Med Reconstr Surg. 2018; 24: 1-12
        • Wee I.J.Y.
        • Kuo L.J.
        • Ngu J.C.
        A systematic review of the true benefit of robotic surgery: Ergonomics.
        Int J Med Robot. 2020; 16: e2113
        • AAGL Advancing Minimally Invasive Gynecology Worldwide
        AAGL position statement: route of hysterectomy to treat benign uterine disease.
        J Minim Invasive Gynecol. 2011; 18: 1-3
      1. Robot-assisted surgery for noncancerous gynecologic conditions: ACOG COMMITTEE OPINION SUMMARY, Number 810.
        Obstet Gynecol. 2020; 136: 640-641
        • Reich H.
        • Decaprio J.
        • McGlynn F.
        Laparoscopic hysterectomy.
        J Gynecol Surg. 1989; 5: 213-217
        • Wu J.M.
        • Wechter M.E.
        • Geller E.J.
        • et al.
        Hysterectomy rates in the United States, 2003.
        Obstet Gynecol. 2007; 110: 1091-1095
        • Wright J.D.
        • Ananth C.V.
        • Lewin S.N.
        • et al.
        Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease.
        JAMA. 2013; 309: 689-698
        • Lim P.C.
        • Crane J.T.
        • English E.J.
        • et al.
        Multicenter analysis comparing robotic, open, laparoscopic, and vaginal hysterectomies performed by high-volume surgeons for benign indications.
        Int J Gynaecol Obstet. 2016; 133: 359-364
        • Pitter M.C.
        • Simmonds C.
        • Seshadri-Kreaden U.
        • et al.
        The impact of different surgical modalities for hysterectomy on satisfaction and patient reported outcomes.
        Interact J Med Res. 2014; 3: e11
        • Carbonnel M.
        • Moawad G.N.
        • Tarazi M.M.
        • et al.
        Robotic hysterectomy for benign indications: what have we learned from a decade?.
        JSLS. 2021; 25 (e2020.00091)
        • AlAshqar A.
        • Goktepe M.E.
        • Kilic G.S.
        • et al.
        Predictors of the cost of hysterectomy for benign indications.
        J Gynecol Obstet Hum Reprod. 2021; 50: 101936
        • Smorgick N.
        • Patzkowsky K.E.
        • Hoffman M.R.
        • et al.
        The increasing use of robot-assisted approach for hysterectomy results in decreasing rates of abdominal hysterectomy and traditional laparoscopic hysterectomy.
        Arch Gynecol Obstet. 2014; 289: 101-105
        • Dallas K.
        • Molina A.
        • Siedhoff M.
        • et al.
        Myomectomy Trends in a population-based cohort from 2005-2018.
        J Minim Invasive Gynecol. 2021; 28: S125
        • Truong M.
        • Kim J.H.
        • Scheib S.
        • et al.
        Advantages of robotics in benign gynecologic surgery.
        Curr Opin Obstet Gynecol. 2016; 28: 304-310
        • Matthews C.A.
        • Reid N.
        • Ramakrishnan V.
        • et al.
        Evaluation of the introduction of robotic technology on route of hysterectomy and complications in the first year of use.
        Am J Obstet Gynecol. 2010; 203: 499.e1-5
        • Landeen L.B.
        • Bell M.C.
        • Hubert H.B.
        • et al.
        Clinical and cost comparisons for hysterectomy via abdominal, standard laparoscopic, vaginal and robot-assisted approaches.
        S D Med. 2011; 64 (201, 203 passim): 197-199
        • Albright B.B.
        • Witte T.
        • Tofte A.N.
        • et al.
        Robotic versus laparoscopic hysterectomy for benign disease: a systematic review and meta-analysis of randomized trials.
        J Minim Invasive Gynecol. 2016; 23: 18-27
        • Swenson C.W.
        • Kamdar N.S.
        • Harris J.A.
        • et al.
        Comparison of robotic and other minimally invasive routes of hysterectomy for benign indications.
        Am J Obstet Gynecol. 2016; 215: 650.e1-650.e8
        • Paraiso M.R.
        • Ridgeway B.
        • Park A.J.
        • et al.
        A randomized trial comparing conventional and robotically assisted total laparoscopic hysterectomy.
        Am J Obstet Gynecol. 2013; 208: 368.e1-368.e7
        • Sarlos D.
        • Kots L.
        • Stevanovic B.
        • et al.
        Robotic compared with conventional laparoscopic hysterectomy. A randomized controlled trial.
        Obstet Gynecol. 2012; 120: 604-611
        • Lonnefors C.
        • Reynisson P.
        • Persson J.
        A randomized trial comparing vaginal and laparoscopic hysterectomy vs robotic-assisted hysterectomy.
        J Minim Invasive Gynecol. 2015; 22: 78-86
        • Wang T.
        • Tang H.
        • Xie Z.
        • et al.
        Robotic-assisted vs. laparoscopic and abdominal myomectomy for treatment of uterine fibroids: a meta-analysis.
        Minim Invasive Ther Allied Technol. 2018; 27: 249-264
        • Iavazzo C.
        • Mamais I.
        • Gkegkes I.D.
        Robotic assisted vs laparoscopic and/or open myomectomy: systematic review and meta-analysis of the clinical evidence.
        Arch Gynecol Obstet. 2016; 294: 5-17
        • Gkegkes I.D.
        • Iatrakis G.
        • Iavazzo P.E.
        • et al.
        Robotic management of fibroids: discussion of use, criteria and advantages.
        Acta Med (Hradec Kralove). 2020; 63: 63-66
        • Orlando M.
        • Kollikonda S.
        • Hackett L.
        • et al.
        Non-hysteroscopic myomectomy and fertility outcomes: a systematic review.
        J Minim Invasive Gynecol. 2021; 28: 598-618.e1
        • Ko K.J.
        • Lee K.S.
        Robotic sacrocolpopexy for treatment of apical compartment prolapse.
        Int Neurourol J. 2020; 24: 97-110
        • Lawrie T.A.
        • Liu H.
        • Lu D.
        • et al.
        Robot-assisted surgery in gynaecology.
        Cochrane Database Syst Rev. 2019; 4: CD011422
        • Nezhat C.
        • Hajhosseini B.
        • King L.P.
        Robotic-assisted laparoscopic treatment of bowel, bladder, and ureteral endometriosis.
        JSLS. 2011; 15: 387-392
        • Liu C.
        • Perisic D.
        • Samadi D.
        • et al.
        Robotic-assisted laparoscopic partial bladder resection for the treatment of infiltrating endometriosis.
        J Minim Invasive Gynecol. 2008; 15: 745-748
        • Hur C.
        • Falcone T.
        Robotic treatment of bowel endometriosis.
        Best Pract Res Clin Obstet Gynaecol. 2021; 71: 129-143
        • Kang J.
        • Kim J.
        The role of robotic surgery for endometriosis.
        Gyne Robot Surg. 2020; 1: 36-49
        • Carpentier M.
        • Merlot B.
        • Bot Robin V.
        • et al.
        Partial cystectomy for bladder endometriosis: robotic assisted laparoscopy versus standard laparoscopy.
        Gynecol Obstet Fertil. 2016; 44: 315-321
        • Soto E.
        • Luu T.H.
        • Liu X.
        • et al.
        Laparoscopy vs. robotic surgery for endometriosis (LAROSE): a multicenter, randomized, controlled trial.
        Fertil Steril. 2017; 107: 996-1002.e3
        • Dulemba J.F.
        • Pelzel C.
        • Hubert H.B.
        Retrospective analysis of robot-assisted versus standard laparoscopy in the treatment of pelvic pain indicative of endometriosis.
        J Robot Surg. 2013; 7: 163-169
        • Mosbrucker C.
        • Somani A.
        • Dulemba J.
        Visualization of endometriosis: comparative study of 3-dimensional robotic and 2-dimensional laparoscopic endoscopes.
        J Robot Surg. 2018; 12: 59-66
        • Schmitt A.
        • Crochet P.
        • Agostini A.
        Robotic-assisted laparoscopic treatment of residual ectopic pregnancy in a previous cesarean section scar: a case report.
        J Minim Invasive Gynecol. 2017; 24: 342-343
        • Yoon R.
        • Sasaki K.
        • Miller C.E.
        Laparoscopic excision of cesarean scar pregnancy with scar revision.
        J Minim Invasive Gynecol. 2021; 28: 746-747
        • Siedhoff M.T.
        • Schiff L.D.
        • Moulder J.K.
        • et al.
        Robotic-assisted laparoscopic removal of cesarean scar ectopic and hysterotomy revision.
        Am J Obstet Gynecol. 2015; 212: 681.e1-681.e6814
        • Kashi P.K.
        • Dengler K.L.
        • Welch E.K.
        • et al.
        A stepwise approach to robotic assisted excision of a cesarean scar pregnancy.
        Obstet Gynecol Sci. 2021; 64: 329-331
        • Hoffmann E.
        • Vahanian S.
        • Martinelli V.T.
        • et al.
        Combined medical and minimally invasive robotic surgical approach to the treatment and repair of cesarean scar pregnancies.
        JSLS. 2021; 25 (e2021.00039)
        • Ghomi A.
        • Nolan W.
        • Rodgers B.
        Robotic-assisted laparoscopic tubal anastomosis: Single institution analysis.
        Int J Med Robot. 2020; 16: 1-5
        • van Seeters J.A.H.
        • Chua S.J.
        • Mol B.W.J.
        • et al.
        Tubal anastomosis after previous sterilization: a systematic review.
        Hum Reprod Update. 2017; 23: 358-370
        • Smith R.B.
        • Brink J.
        • Hu C.
        • et al.
        Robotic transabdominal cerclage vs Laparotomy: a comparison of obstetric and surgical outcomes.
        J Minim Invasive Gynecol. 2020; 27: 1095-1102
        • Lee R.
        • Biats D.
        • Mancuso M.
        Robotic transabdominal cerclage: a case series illustrating costs.
        J Robot Surg. 2018; 12: 361-364
        • Advincula A.P.
        • Reynolds R.K.
        The use of robot-assisted laparoscopic hysterectomy in the patient with a scarred or obliterated anterior cul-de-sac.
        JSLS. 2005; 9: 287-291
        • Herrinton L.J.
        • Raine-Bennett T.
        • Liu L.
        • et al.
        Outcomes of robotic hysterectomy for treatment of benign conditions: influence of patient complexity.
        Perm J. 2020; 24: 19.035
        • Barakat E.E.
        • Bedaiwy M.A.
        • Zimberg S.
        • et al.
        Robotic-assisted, laparoscopic, and abdominal myomectomy: a comparison of surgical outcomes.
        Obstet Gynecol. 2011; 117: 256-266
        • Moawad G.N.
        • Tyan P.
        • Abi Khalil E.D.
        • et al.
        Multidisciplinary Resection of Deeply Infiltrative Endometriosis.
        J Minim Invasive Gynecol. 2018; 25: 389-390
        • Piccoli M.
        • Esposito S.
        • Pecchini F.
        • et al.
        Full robotic multivisceral resections: the Modena experience and literature review.
        Updates Surg. 2021; 73: 1177-1187
        • Bell M.C.
        • Torgerson J.L.
        • Kreaden U.
        The first 100 da Vinci hysterectomies: an analysis of the learning curve for a single surgeon.
        S D Med. 2009; 62: 91-95
        • Kho R.M.
        • Hilger W.S.
        • Hentz J.G.
        • et al.
        Robotic hysterectomy: technique and initial outcomes [published correction appears in Am J Obstet Gynecol. 2007 Sep;197(3):332].
        Am J Obstet Gynecol. 2007; 197: 113.e1-113.e1134
        • Julian D.
        • Tanaka A.
        • Mattingly P.
        • et al.
        A comparative analysis and guide to virtual reality robotic surgical simulators.
        Int J Med Robot. 2018; 14: 10
        • Turner T.B.
        • Kim K.H.
        Mapping the robotic hysterectomy learning curve and re-establishing surgical training metrics.
        J Gynecol Oncol. 2021; 32: e58
        • Azadi S.
        • Green I.C.
        • Arnold A.
        • et al.
        Robotic surgery: the impact of simulation and other innovative platforms on performance and training.
        J Minim Invasive Gynecol. 2021; 28: 490-495
        • Culligan P.
        • Gurshumov E.
        • Lewis C.
        • et al.
        Predictive validity of a training protocol using a robotic surgery simulator.
        Female Pelvic Med Reconstr Surg. 2014; 20: 48-51
      2. Guidelines for privileging for robotic-assisted gynecologic laparoscopy. AAGL Advancing Minimally Invasive Gynecology Worldwide.
        J Minim Invasive Gynecol. 2014; 21: 157-167
        • American College of Obstetricians and Gynecologists’ Committee on Gynecologic Practice, The Society of Gynecologic Surgeons
        Robot-Assisted Surgery for Noncancerous Gynecologic Conditions: ACOG COMMITTEE OPINION, Number 810.
        Obstet Gynecol. 2020; 136: e22-e30
        • Rardin C.R.
        The debate over robotics in benign gynecology.
        Am J Obstet Gynecol. 2014; 210: 418-422
        • Mehta A.
        • Xu T.
        • Hutfless S.
        • et al.
        Patient, surgeon, and hospital disparities associated with benign hysterectomy approach and perioperative complications.
        Am J Obstet Gynecol. 2017; 216: 497.e1-497.e10
        • Smith A.J.B.
        • AlAshqar A.
        • Chaves K.F.
        • et al.
        Association of demographic, clinical, and hospital-related factors with use of robotic hysterectomy for benign indications: A national database study.
        Int J Med Robot. 2020; 16: e2107
        • Price J.T.
        • Zimmerman L.D.
        • Koelper N.C.
        • et al.
        Social determinants of access to minimally invasive hysterectomy: reevaluating the relationship between race and route of hysterectomy for benign disease.
        Am J Obstet Gynecol. 2017; 217: 572.e1-572.e10
        • Lim C.S.
        • Griffith K.C.
        • Travieso J.
        • et al.
        To robot or not to robot: the use of robotics in benign gynecologic surgery.
        Clin Obstet Gynecol. 2020; 63: 327-336
        • Lonnerfors C.
        • Reynisson P.
        • Persson J.
        A randomized trial comparing vaginal and laparoscopic hysterectomy vs robot-assisted hysterectomy.
        J Minim Invasive Gynecol. 2015; 22: 78-86
        • Kaaki B.
        • Lewis E.
        • Takallapally S.
        • et al.
        Direct cost of hysterectomy: comparison of robotic versus other routes.
        J Robot Surg. 2020; 14: 305-310
        • Oliver J.L.
        • Kim J.H.
        Robotic sacrocolpopexy-is it the treatment of choice for advanced apical pelvic organ prolapse?.
        Curr Urol Rep. 2017; 18: 66
        • Misal M.
        • Delara R.
        • Wasson M.N.
        Cost-effective minimally invasive gynecologic surgery: emphasizing surgical efficiency.
        Curr Opin Obstet Gynecol. 2020; 32: 243-247
        • Wu C.Z.
        • Klebanoff J.S.
        • Tyan P.
        • et al.
        Review of strategies and factors to maximize cost-effectiveness of robotic hysterectomies and myomectomies in benign gynecological disease.
        J Robot Surg. 2019; 13: 635-642